.. _tutorial_query_a_dataset: *************************** Query a Dataset with Python *************************** In this tutorial you will learn how to query data from a registered dsgrid dataset. use data from the dsgrid registry stored on NREL's HPC Kestrel cluster, and the same data stored on `OEDI `_. This tutorial will use the `state_level_simplified` dataset from the `tempo project `_ as an example. Query objectives ================ This query will accomplish the following: - Read data from Kestrel filesystem and OEDI s3 bucket - Filter data for given model years, geography, scenario, and other dimensions - Export the query results to a pandas dataframe or a csv Required Knowledge ================== - How to setup a python virtual environment - How to install python modules - How to use a jupyter notebook or python interpreter Setup Environment ================= 1. Setup python environment from a terminal run: .. code-block:: bash $ module load python # only if running on Kestrel $ python -m venv dsgrid-tutorial $ source dsgrid-tutorial/bin/activate 2. Install duckdb and pandas .. code-block:: bash $ pip install duckdb $ pip install pandas Load Data ========= 1. Enter a python interpreter .. code-block:: bash $ python 2. Load .parquet files from Kestrel into a table .. tabs:: .. code-tab:: python Kestrel import duckdb tablename = "tbl" data_dir = "/datasets/dsgrid/dsgrid-tempo-v2022" dataset_name = "state_level_simplified" filepath = f"{data_dir}/{dataset_name}" duckdb.sql(f"""CREATE VIEW {tablename} AS SELECT * FROM read_parquet("{filepath}/table.parquet/**/*.parquet", hive_partitioning=true, hive_types_autocast=false)""") duckdb.sql(f"DESCRIBE {tablename}") # shows columns and types duckdb.sql(f"SELECT * FROM {tablename} LIMIT 5").to_df() # shows first 5 rows .. code-tab:: python OEDI import duckdb tablename = "tbl" data_dir = "s3://nrel-pds-dsgrid/tempo/tempo-2022/v1.0.0" dataset_name = "state_level_simplified" filepath = f"{data_dir}/{dataset_name}" duckdb.sql(f"""CREATE TABLE {tablename} AS SELECT * FROM read_parquet('{filepath}/table.parquet/**/*.parquet', hive_partitioning=true, hive_types_autocast=false)""") duckdb.sql(f"DESCRIBE {tablename}") # shows columns and types duckdb.sql(f"SELECT * FROM {tablename} LIMIT 5").to_df() # shows first 5 rows Filter data with duckdb ======================= One of the main advantages to using duckdb is the ability to filter data while loading. If a table is created with a filter, duckdb will not have to read all of the data to generate the requested table. This can make queries much more efficient. Using the same tablename and filepath from the sections above .. code-block:: python duckdb.sql("""CREATE TABLE {tablename} AS SELECT * FROM read_parquet('{filepath}/table.parquet/**/*.parquet', hive_partitioning=true, hive_types_autocast=false WHERE state='MI' AND scenario='efs_high_ldv' """) Aggregation and metadata ======================== This example will cover 2 distinct topics: - aggregation with duckdb - how to use dsgrid metadata in a query dsgrid datasets contain a metadata.json file that specifies dimensions, their column names, query_names, and the value column of the dataset. The best way to use this metadata is to load it as TableMetadata using the provided dsgrid/scripts/table_metadata.py file. The TableMetadata can be loaded with pydantic installed and if using OEDI, pyarrow will also be needed to load the metadata.json. To load the table_metadata script, either copy it from github into a directory that will be used as the dsgrid_path in the Read Metadata step, or clone dsgrid and use the repository. Set the scripts_path variable to the directory that contains table_metadata.py. If using a dsgrid repo, this path will be in the dsgrid/scripts directory. Setup: .. tabs:: .. code-tab:: bash Kestrel python -m pip install pydantic .. code-tab:: bash OEDI python -m pip install pydantic pyarrow Read Metadata: .. tabs:: .. code-tab:: python Kestrel import path import sys scripts_path = Path() sys.path.append(scripts_path) from scripts.table_metadata import TableMetadata dataset_path = "/datasets/dsgrid/dsgrid-tempo-v2022/state_level_simplified" metadata_path = f"{dataset_path}/metadata.json" table_metadata = TableMetadata.from_file(metadata_path) .. code-tab:: python OEDI import path import sys scripts_path = Path() sys.path.append(scripts_path) from scripts.table_metadata import TableMetadata bucket = "nrel-pds-dsgrid" filepath = "tempo/tempo-2022/v1.0.0/state_level_simplified/metadata.json" table_metadata = TableMetadata.from_s3(bucket, filepath) These metadata columns_by_type and value_column can be used to write queries that would apply to different datasets. The following example will query the `state_level_simplified` datasets, and aggregate the results by: model_year, scenario, geography and subsector with a column for the value summed up across groups. Each dimension could have multiple columns, so we first create the group_by_cols from the metadata, and use this list to create the table. .. code-block:: python group_by_dimensions = ['model_year', 'scenario', 'geography', 'subsector'] group_by_cols = [] for dimension in group_by_dimensions: group_by_cols.extend(table_metadata.list_columns(dimension)) group_by_str = ", ".join(group_by_cols) duckdb.sql(f"""CREATE TABLE {tablename} AS SELECT SUM({value_column}) AS value_sum, {group_by_str} FROM read_parquet('{filepath}/table.parquet/**/*.parquet') GROUP BY {group_by_str} """) This query would also work on the `full_dataset` by using metadata for dimensions, but that query could take hours, or fail because of memory limitations. Export Data =========== 1. Create a pandas dataframe after loading, and possibly filtering, from the previous steps .. code-block:: python dataframe = duckdb.sql("SELECT * FROM {tablename}").df() 2. Export dataframe to csv after creating dataframe .. code-block:: python dataframe.to_csv('mydata.csv')